Precalculus Lesson 9.2 Graphs of Polar Equations Mrs. Snow, Instructor

To plot points with polar coordinates, it is convenient to use a polar grid. It is sort of like the unit circle superimposed with graph paper, like below:

 θ = constant – graphs a line at angle θ r=constant – graphs a circle of radius r

Sketch the graph of the equation and express the equation in rectangular coordinates:

$$\theta = \frac{\pi}{3}$$
 ton $\theta = \tan \frac{\pi}{3}$

$$\frac{4}{2} = \sqrt{3}$$

$$4 = \sqrt{3}$$
Strought wie

strought une
$$r = 3$$

$$\Gamma^{2} = 9$$

$$\chi^{2} + y^{2} = 9$$

$$\text{under } \Gamma = 3$$

Graphing a Polar Equation of a Line:

Some equations can easily be expressed in rectangular coordinates. If this is the case then convert to rectangular coordinates.

Identify and graph the equation

$$\theta = \frac{\pi}{4}$$

$$\frac{4}{x} = 1$$

Identify and graph the equation

$$r \sin \theta = 2$$

Identify and graph the equation

$$r\cos\theta = -3$$

$$\sim$$

In summary the equations in the forms below will graph as lines, note the forms for horizontal and vertical lines. Textbook (pg. 580:

Identifying and Graphing a Polar Equation of a Circle (pg. 581):

Sketch the polar equation $r = -2\cos\theta$ When almost polar axis 2a = 2 a = -1Adding a = 1

Other Equations (pg. 581)

a > 0, distance on axis is 2a

if cosine, then along polar axis

if sine, then along $\pi/2$ axis

if cosine: along polar axis
if sine: along $\frac{\pi}{2}$ axis

a. Limacon without inner loop if :

b. Limacon has an inner loop if:

$$\left|\frac{a}{b}\right| < 1 \rightarrow a < b$$
 by bigger
$$3 = 2 + 3 = 5$$

$$7 = 2 + 3 = 6$$

Cardioid – heart shaped (pg. 581)

$$r = 1 - \sin \theta$$

a=1; length of cardioid= $\frac{2a-2}{2}$ equation is sine so along the $\theta=\frac{\pi}{2}axis$ and $-\sin\theta$ means $\log -\frac{\pi}{2}axis$

Whenever you cannot remember how to graph the polar equation, you can always graph a period of the trig function from $0 \le \theta < 2\pi$ and transfer the data over to a polar graph. Don't rely on memorizing an equation and associated graph shape, you will want a backup method!! Table of values (use values for theta that yield friendly values for r):

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{2}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
$\sin \theta$	0	7	1	12	0	-1	0
$r = 1 - \sin \theta$	\	之	1-1	12	\	1-(-1)	1

Graphing a limaçon without an inner loop

Sketch the graph of the equation

$$r = 3 + 2\cos\theta$$

Graphing a limaçon with an inner loop

$$r = 1 + 2 \cos \theta$$

a=1 'b' bisser; mner b=2 loop cosine along polon over

More Equations

Name

Lemniscate Figure 8

Rose with three petals

Rose with four petals

$$r^2 = a^2 \cos(2\theta), \quad a > 0$$

 $r^2 = a^2 \sin(2\theta), \quad a > 0$

$$r = a \sin(3\theta), \quad a > 0$$

 $r = a \cos(3\theta), \quad a > 0$

$$r = a \sin(2\theta), \quad a > 0$$

 $r = a \cos(2\theta), \quad a > 0$

Typical graph

a = petal length

number of petals look at coefficient of θ :

 $\begin{cases} odd = n \text{ petals} \\ even = 2n \text{ petals} \end{cases}$

a = length of petal

More on Limagons / what about 1=5-4 cos0 a=5 "a"bisser-limaçon-nologo (different) cosine along polar axis negative => negative polar axis! 6+a=4+5=9) negative b-a=4-5=-1=> dimple on other side of trutical axis dimple at 1 [= 3+5 sin A (16) bisser -> lumacon w/60p Sine along I axis

Positive > positive axis (different) b+a=5+3=8 6-a = 5-3=2 - inside of loop loop crosses here at 0,0)

0=2 /b" bisser > lemacen w/loop

b=4

(different) Negativi sine => limacen on

-II axis

negative

Negativ

Graphing a Polar Equation (spiral)

It is the locus of points corresponding to the locations over time of a point moving away from a fixed point with a constant speed along a line which rotates with constant angular velocity.

There are several equations that will produce a spiral. The **logarithmic spiral**

$$r = e^{\theta/5}$$

may be written as $\theta = 5 \ln r$

Archimedes Spiral is in the form of

$$r = a\theta$$

