Precalculus
Lesson 12.5: The Binomial Theorem
Mrs. Snow, Instructor

An expression with two terms is called a binomial for example a + b is a binomial. It is an easy
enough process to square this binomial or to cube it, but expanding this binomial by a higher degree

or multiplying it out more times, will quickly get tedious. Looking at the binomial expansion of a + b
for the first five degrees we should see a pattern:
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What is the pattern?

(a+b)™
1. There are n + 1 terms, the first being a™ and the last is b™.
2. The exponents of a decrease by 1 from term to term while the exponents of b increase by
one

3. The sum of the exponents of a and b in each term isn

The pattern that is present in binomial expansion has been known for centuries. Blaise Pascal

organized it into a triangular format that has become known as Pascal’s Triangle. Below are both his
original version and what we use today:
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Using Pascal’s Triangle to expand binomials
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Pascal’s Triangle is pretty slick for binomial expansions with relatively small values of n. For very
large exponents, we need a more efficient way to calculate the coefficients. Pascal’s Triangle is
recursive in that to find the 100" row, we need the 99" row. So to come up with a process , we will
need to use factorials that we studied in 12.1.

Binomial Coefficients

If j and n are integers with 0 = j = »n, the symbol (J) is defined as
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This helps up because the values of Pascal’s Triangle are in fact binomial coefficients!




Binomial Theorem

Binomial Theorem

Let x and a be real numbers. For any positive integer n, we have
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Use the Binomial Theorem to expand the following:
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The Binomial theorem may be used to find a particular term of a binomial expansion:
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Find the 6" term in the expansion of (x + 2) °
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