Precalculus

Lesson 12.2: Arithmetic Sequences

Mrs. Snow, Instructor

When any two numbers in a sequence differ by a constant value, the sequence is identified as an Arithmetic Sequence.

An arithmetic sequence may be defined recursively as:

$$a_1 = a, \qquad a_n - a_{n-1} = d$$

 $a_1=a, \qquad a_n-a_{n-1}=d$ So a consecutive For n arithmetic sequence $\{a_n\}$ whose first term is a_1 and common difference is d, the nth term is determined by the formula:

$$a_n = a_{n-1} + d$$

Is 4, 6, 8, 10 arithmetic? What is the common difference?

Determine if the following is an arithmetic sequence, find the first term and the common difference:

$$S_1 = 3+5$$
 = 8
 $S_2 = 3(2)+5 = 11$
 $S_3 = 9+5 = 14$
 $\{s_n\} = \{3n+5\}$
 $\{s_n\} = \{3n+5\}$
 $\{s_n\} = \{3n+5\}$

Determine if the following is an arithmetic sequence, find the first term and the common difference:

$$\{t_n\} = \{4-n\}$$

 $\{t_n\} = \{4-n\}$
 $\{t_n$

nth Term of an Arithmetic Sequence

For an arithmetic sequence $\{a_n\}$ whose first term is a_1 and whose common difference is d, the nth term is determined by the formula

$$a_n = a_1 + (n-1)d$$

Find the forty-first term of the arithmetic sequence: 2, 6, 10, 14, 18, ...

$$C_{41} = 2 + (41 - 1) + 4$$

= 2 + 40(4)
= 2 + 160 = 162

The 8th term of an arithmetic sequence is 75, and the 20th term is 39.

- a) Find the first term and the common difference
- b) Give a recursive formula for the sequence.

c) What is the nth term of the sequence? System of equations
$$a_8 = 75 = a_1 + (8-1)d = a_1 + 7d$$

$$a_{20} = 39 = a_1 + (20-1)d = a_1 + 19d$$

$$(a, +7d = 77) - 1 - a/ - 7d = -75$$

 $a, +19d = 39$
 $a, +19d = 39$

(c)
$$a_n = 96 + (n-1)(-3)$$
 Simplify
= 96-3n+3 Simplify

The sum of the first n terms of an arithmetic sequence is known as a **Partial Sum of an Arithmetic Sequence**

Let $\{a_n\}$ be an arithmetic sequence with first term a_1 and common difference of d. The sum S_n of the first n terms of $\{a_n\}$ may be found in two ways:

$$S_{n} = a_{1} + a_{2} + a_{3} + \dots + a_{n}$$

$$= \sum_{k=1}^{n} [a_{1} + (k-1)d] =$$

$$S_{n} = \frac{n}{2} [2a_{1} + (n-1)d]$$

$$S_{n} = \frac{n}{2} (a_{1} + a_{n})$$

Find the sum S_n of the first n terms of the sequence: $\{a_n\} = \{3n + 5\}$

$$Q_1 = 3+5 = 8$$
 $Q_2 = 3(2) + 5 = 11$
 $S_1 = \frac{n}{2} \left[2a_1 + (n-1)d \right]$
 $S_2 = \frac{n}{2} \left[2a_1 + (n-1)d \right]$
 $S_3 = \frac{n}{2} \left[2(8) + (n-1)3 \right]$
 $S_4 = \frac{n}{2} \left[2(8) + (n-1)3 \right]$
 $S_4 = \frac{n}{2} \left[(13+3n) \right]$
 $S_4 = \frac{n}{2} \left[(13+3n) \right]$
 $S_4 = \frac{n}{2} \left[(13+3n) \right]$

Find the sum: $60 + 64 + 68 + 72 + \cdots + 120$

$$Q_1 = 60$$
 $Q_1 = 60$
 $Q_1 = 120$
 $Q_1 = 20$
 $Q_2 = 20$
 $Q_3 = 20$
 $Q_4 = 40$
 $Q_4 = 40$
 $Q_4 = 40$
 $Q_5 = 60$
 $Q_6 = 60$
 $Q_6 = 40$
 $Q_6 = 60$
 $Q_6 = 60$