Precalculus
Lesson 10.7: Plane Curves and Parametric Equations
Mrs. Snow, Instructor

Think of a point moving in a plane through time. The x- and y- coordinates of the point will then
be a function of time. So:
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Letx = f(t) and y = g(t) where f and g are two functions whose common domam is some
interval I . The collection of points defined by

(x,¥) = (f(©),g(®))

| is called a plane curve. The equations

x = f(t) y=4g@®

Graphing a Curve Defined by Parametric Equations: Notice that for every value of t, we get a
point on the curve.
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| Now find the rectangular equation for the
! parametriccurve. CalbnM bu~e Lo ithahd
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Eliminating the Parameter:
Often a curve given by parametric equations can also be represented by a single rectangular

equation in x and y. The process of finding this equation is called eliminating the parameter.

' Find themrwg?:_'t‘;hgu lar equation of the curve whose parametric equations are: |
x=4cost, and y = 3sint - Et SN ’-
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