Precalculus

Lesson 10.7: Plane Curves and Parametric Equations Mrs. Snow, Instructor

Think of a point moving in a plane through time. The x- and y- coordinates of the point will then be a function of time. So:

Let x=f(t) and y=g(t) where f and g are two functions whose common domain is some interval I. The collection of points defined by

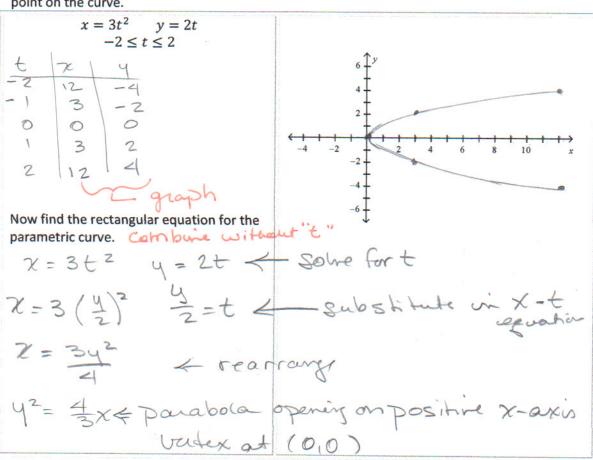
$$(x,y) = (f(t),g(t))$$

is called a plane curve. The equations

$$x = f(t)$$
 $y = g(t)$

where t is in I are parametric equations for the curve. the variable t is called parmeter.

Graphing a Curve Defined by Parametric Equations: Notice that for every value of t, we get a point on the curve.



Eliminating the Parameter:

Often a curve given by parametric equations can also be represented by a single rectangular equation in x and y. The process of finding this equation is called eliminating the parameter.

Find the rectangular equation of the curve whose parametric equations are: $x = 4 \cos t$, and $y = 3 \sin t$ $-0 \le t \le 2\pi$ $\frac{x}{4} = \cos t$ $\frac{x}{3} = \sin t$ $\frac{x}{4} = \cos t$ $\frac{x}{3} = \sin t$ $\frac{x}{4} = \cos t$ $\frac{x}{3} = \sin^2 t$ $\frac{x}{4} = \cos^2 t$ $\frac{x}{3} = \sin^2 t$ $\frac{x}{4} = \cos^2 t$ $\frac{x}{3} = \sin^2 t$ $\frac{x}{4} = \cos^2 t$ $\frac{x}{3} = \sin^2 t$ $\frac{x}{3} = \sin^2 t$ $\frac{x}{4} = \cos^2 t$ $\frac{x}{4} = \cos^2 t$ $\frac{x}{3} = \sin^2 t$ $\frac{x}{4} = \cos^2 t$ $\frac{x}{4} = \cos^2 t$ $\frac{x}{3} = \sin^2 t$ $\frac{x}{4} = \cos^2 t$ $\frac{x}{4}$