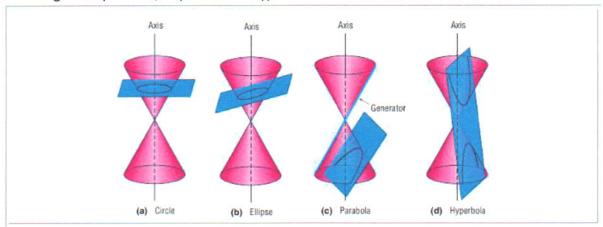
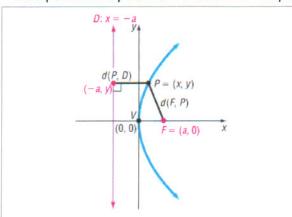
Precalculus

Lesson 10.1 and 10.2: Conics and the Parabola Mrs. Snow, Instructor

Conic sections are curves that result from the intersection of a cone and a plane. We will be looking at the parabola, ellipse and the hyperbola.



Parabola: A collection, or locus, of all points P in the plane that are the same distance from a fixed point as they are from a fixed line. The point F is the **focus** and the line is its **directrix**.



these distances are equal:

$$d(F,P) = d(P,D)$$

For the parabola that opens along the x-axis:

 $y^2 = 4ax$ opens

where:

vertex at (0,0), focus at (a,0), "a "is the distance from the vertex to the focus of a parabola

* format from Hatt

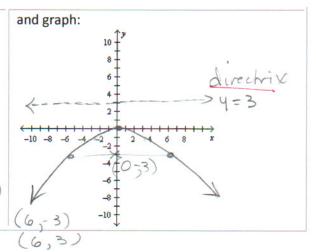
Analyze the equation: $x^2 = -12y$ (find the vertex, focus and directrix and graph)

graph)

$$\chi^2 = -12\eta$$
, but $(0,0)$
 $-12 = 4a$
 $-3 = a$ to four $(0,-3)$

(atus rectum points

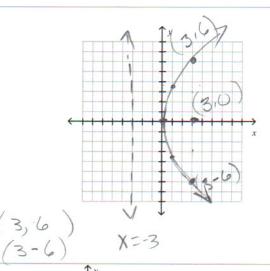
 $(0,-3)$
 $(0,-3)$
 $(0,-3)$
 $(0,-3)$



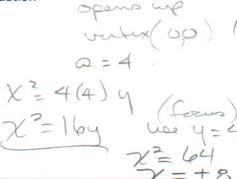
Graphing and Finding Equations of Parabolas

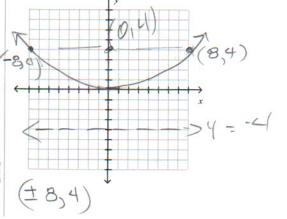
Find an equation of a parabola with a vertex at (0,0) and a focus at (3,0). Graph the equation

$$4^{2} = 4ax$$
 $4^{2} = 4(3)x$
 $4^{2} = 12x$
 $4^{2} = 12(3)$

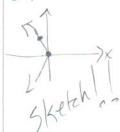


Find an equation of a parabola with a focus at (0,4) and a and directrix line y = -4 Graph the equation





Find the equation of the parabola with vertex at (0,0) if its axis of symmetry is the x-axis and its graph contains the point $\left(-\frac{1}{2},2\right)$

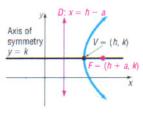


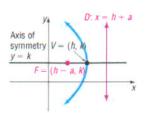
Find the equation of the parabola with vertex at
$$(0,0)$$
 if its axis of symmetry is the x-axis and its graph contains the point $(-\frac{1}{2},2)$
 $(-\frac{1}{2},2)$

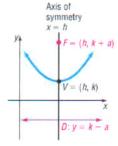
And yes, parabolas may be translated:

Equations of a Parabola; Vertex at (h, k); Axis of Symmetry Parallel to a Coordinate Axis

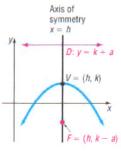
vertex	focus	directrix	equation	description
(h, k)	(h+a,k)	x = h - a	$(y-k)^2 = 4a(x-h)$	opens right
(h, k)	(h-a,k)	x = h + a	$(y-k)^2 = -4a(x-h)$	opens left
(h, k)	(h, k+a)	y = k - a	$(x-h)^2 = 4a(y-k)$	opens up
(h, k)	(h, k-a)	y = k + a	$(x-h)^2 = -4a(y-k)$	opens down







(c)
$$(x - h)^2 = 4a(y - k)$$



(d)
$$(x-t)^2 = -4a(y-k)$$

Finding the Equation of a Parabola, Vertex Not at the Origin

Find an equation of the parabola with vertex at (-2,3) and focus at (0,3). Graph.

$$(h, K)$$
 $a = 2 (from - 2to 0)$
 $1 - K)^2 - 40 (x - h)$

$$(y-K)^2 = 4a(x-h)$$

 $(y-3)^2 = 8(x+2)$

Analyzing the Equation of a Parabola, (find the vertex, focus and directrix and graph)

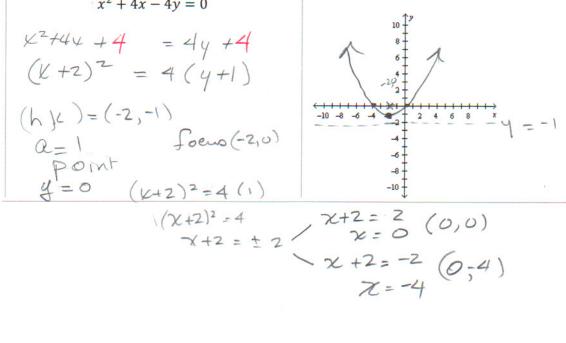
$$x^2 + 4x - 4y = 0$$

$$\chi^{2}+4\psi+4=4y+4$$

 $(\chi+2)^{2}=4(y+1)$

$$(h)()=(-2,-1)$$

 $Q=1$ focus $(-2,0)$
Point
 $y=0$ $(k+2)^2=4(1)$



$$(\chi+2)^2=4$$
 $\chi+2=\pm 2$
 $\chi+2=-2$
 $\chi+2=-2$
 $\chi=-4$