Precalculus

Lesson 10.4: The Hyperbola

Mrs. Snow, Instructor

A **hyperbola** is the collection (locus) of all points In the plane, the difference of whose distances from two fixed points, called the foci, is a constant.

Equation of a Hyperbola Centered about the origin with Transverse Axis along the x-axis

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$b^2 = c^2 - a^2$$

center at (0,0); foci at $(\pm c,0)$; and vertices at $(\pm a,0)$

two oblique asymptotes:
$$y = \pm \frac{b}{a}x$$

Find an equation of the hyperbola with center at the origin, one focus at (3,0) and one vertex at (-2,0). Graph

Analyze the equation; find the center, transverse axis, vertices, and foci. Graph.

$$\frac{x^2}{16} - \frac{y^2}{4} = 1$$

Equation of a Hyperbola; Center at (0, 0); Transverse Axis along the y-axis

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

$$b^2=c^2-a^2$$

center at (0,0); foci at $(0,\pm c)$; and vertices at $(0,\pm a)$

two oblique asymptotes:
$$y = \pm \frac{a}{b}x$$

Analyze the equation, find the center, transverse axis, vertices, and foci and graph: $y^2-4x^2=4$

Find an equation of the hyperbola having one vertex at (0,2) and foci at (0,-3) and (0,3). Graph.

Analyze the equation, find the center, transverse axis , vertices, foci, and asymptotes and graph: $9x^2-4y^2=36$

Hyperbolas at a center of (h, k)

Opens	Opens left and right Transverse axis x-axis	Opens up and down Transverse axis y-axis
Form:	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$	$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$
Center:	(h, k)	(h,k)
Vertices	(h+a,k)and (h-a,k)	(h, k+a) and $(h, k-a)$
Slope of Asymptotes	$\pm \frac{b}{a}$	$\pm \frac{a}{b}$
Equation of Asymptotes	$y - k = \pm \frac{b}{a}(x - h)$	$y - k = \pm \frac{a}{b}(x - h)$
Foci $a^2 + b^2 = c^2$	(h+c,k), $(h-c,k)$)	(h, k+c), (h, k-c)

Find an equation for the hyperbola with center at (1, -2), one focus at (4, -2), and one vertex at (3, -2). Graph the equation by hand.

Analyze the equation, find the center, transverse axis , vertices, foci, and asymptotes and graph: $-x^2+4y^2-2x-16y+11=0$

