Precalculus

Lesson 5.1: Composite Functions

Mrs. Snow, Instructor

Composite Functions: A composite function is a function that is made or composed of more than one "independent" function. In general, a number x is applied to one function the result or output is then applied to a second function.

Given two functions f and g, the **composite function**, denoted by $f \circ g$ (read as "f composed with g"), is defined by

$$(f \circ g)(x) = f(g(x))$$

The domain of $f \circ g$ is the set of all numbers x in the domain of g such that g(x)is in the domain of f.

(ook at domain of g (x) prestrictions?

Domain of a composite: combine with the domain of F(g(x)) -> restrictions? The domain of a composite function, $f \circ g$, if defined whenever both g(x) and f(g(x)) are defined.

Evaluating a composite function

Suppose that $f(x) = 2x^2 - 3$ and g(x) = 4x. Find: (a) $(f \circ g)(1)$ (b) $(g \circ f)(1)$ (c) $(f \circ f)(-2)$ (d) $(g \circ g)(-1)$

(d)
$$(g \circ g)(-1)$$

$$f(g(n)) = g(f(n)) = f(f(-2)) = g(g(-n)) = g(n) = 4(n) =$$

Finding a composite function and its domain

Suppose that
$$f(x) = x^2 + 3x - 1$$
 and $g(x) = 2x + 3$.
Find: (a) $f \circ g$ (b) $g \circ f$ Domain

Then find the domain of each composite function.

$$f(x) = R$$

$$f(g(x)) = (2x+3)^2 + 3(2x+3) - 1$$

$$= 4x^2 + 12x + 9 + 6x + 9 - 1$$

$$= 4x^2 + 18x + 17 \quad f(g(x)) \text{ Domain } R$$

$$= 4x^2 + 18x + 17 \quad f(g(x)) \text{ Domain } R$$

$$= 6x^2 + 18x + 17 \quad f(g(x)) \text{ Domain } R$$

$$= 6x^2 + 6x + 1 \quad \text{Domain } R$$

$$= 6x^2 + 6x + 1 \quad \text{Domain } R$$

$$= 7x^2 + 6x + 1 \quad \text{Domain } R$$

$$= 7x^2 + 6x + 1 \quad \text{Domain } R$$

$$= 7x^2 + 6x + 1 \quad \text{Domain } R$$

$$= 7x^2 + 6x + 1 \quad \text{Domain } R$$

Suppose that
$$f(x) = \frac{1}{x+2}$$
 and $g(x) = \frac{4}{x-1}$. Find: (a) $f \circ g$ (b) $f \circ f$ $g(x) = \frac{4}{x-1}$. Find: (a) $f \circ g$ (b) $f \circ f$ $g(x) = \frac{4}{x-1}$. Then find the domain of each composite function. Domain $f \circ g$

$$f(g(x)) = \frac{4}{x-1} + \frac{2(x-1)}{(x-1)} = \frac{4+2x-2}{x-1}$$

$$= \frac{x-1}{2x+2} = \frac{x-1}{2x+2}$$

$$= \frac{x-1}{2x+2} = \frac{x+2}{2x+2}$$

$$= \frac{x-1}{2x+2} = \frac{x+2}{2x+2}$$

$$= \frac{x-1}{2x+2} = \frac{x+2}{2x+2}$$

$$= \frac{x-1}{2x+2} = \frac{x+2}{2x+2}$$

$$= \frac{x-1}{2x+2} = \frac{x+2+2}{2x+2}$$

$$= \frac{x+2+2}{2x+2} = \frac{x+2+2}$$

Show that two composite functions are equal

If
$$f(x) = 3x - 4$$
 and $g(x) = \frac{1}{3}(x + 4)$, show that $(f \circ g)(x) = (g \circ f)(x) = x$

for every x in the domain of $f \circ g$ and $g \circ f$.

$$f(g(x)) = 3(\frac{1}{3}(x+4)) - 4$$
 $= 3(\frac{1}{3}x + \frac{1}{3}) - 4$
 $= \frac{1}{3}(3x)$
 $= x + 4 - 4$
 $= x$
 $= x$
 $= x$

Finding the components of a composite function

Find functions
$$f$$
 and g such that $f \circ g = H$ if $H(x) = (x^2 + 1)^{50}$.

$$H(X) =$$

$$f (9(X))$$

$$f(x) = x^5$$

$$g(x) = x^2 + 1$$

Find functions f and g such that
$$f \circ g = H$$
 if $H(x) = \frac{1}{x+1}$.

$$H(x) = \frac{1}{x}$$

$$f(x) = \frac{1}{x}$$

$$g(x) = \xi \Rightarrow = x+1$$

Precalculus

Lesson 5.2: One to One Functions; Inverse Functions Mrs. Snow, Instructor

A quick definition review: A function is a special relation for which every element of the domain corresponds to exactly one element of the range. Now, for a function to be considered one-toone or it may be written as "1-1," it must also meet the following criteria: every element of the range corresponds to exactly one element of the domain. Another way to look at this is that each x in the domain has one and only one corresponding point in the range.

A function is one-to-one if any two different inputs in the domain correspond to two different outputs in the range. That is

$$f(x_1) \neq f(x_2)$$
 for $x_1 \neq x_2$

So, χ is unique $f(x_1) \neq f(x_2)$ for $x_1 \neq x_2$ no repeaters and γ is unique No repeaters

Graphically we can determine a one-to-one relationship by using the horizontal-line-test to determine of f is one-to-one. Basically, this is analogous to the vertical line test, only horizontal.

Horizontal-line Test

If every horizontal line intersects the graph of a function f in at most one point, then f is one-to-one.

Using the graph of the function to determine if the functions are 1-1

Inverses: Another way of saying inverse is opposite. Did you ever play "opposite day" with your parents? If you remember you probably would not confess it; Yes means No and No means Yes! Mathematically: x is y and y is x.

$$f(x) \text{ and } g(x) \text{ are inverses if and only if: } Composites = X$$

$$f(g(x)) = x \qquad and \qquad g(f(x)) = x$$

Suppose that f is a one-to-one function. Then, to each x in the domain of f, there is exactly one y in the range (because f is a function); and to each y in the range of f, there is exactly one x in the domain (because f is one-to-one). The correspondence from the range of f back to the domain of f is called the **inverse function of f.** The symbol f^{-1} is used to denote the inverse of f.

Find the inverse of the following one-to-one function:

$$f(x) = \{(-3, -27), (-2, -8), (-1, -1), (0, 0), (1, 1), (2, 8), (3, 27)\}$$

$$f'(x) = \{(-3, -27), (-2, -8), (-1, -1), (0, 0), (1, 1), (2, 8), (3, 27)\}$$

$$f'(x) = \{(-3, -27), (-2, -8), (-1, -1), (0, 0), (1, 1), (2, 8), (3, 27)\}$$

$$f'(x) = \{(-3, -27), (-2, -8), (-1, -1), (0, 0), (1, 1), (2, 8), (3, 27)\}$$

$$f'(x) = \{(-3, -27), (-2, -8), (-1, -1), (0, 0), (1, 1), (2, 8), (3, 27)\}$$

$$f'(x) = \{(-3, -27), (-2, -8), (-1, -1), (0, 0), (1, 1), (2, 8), (3, 27)\}$$

$$f'(x) = \{(-3, -27), (-2, -8), (-1, -1), (0, 0), (1, 1), (2, 8), (3, 27)\}$$

$$f'(x) = \{(-3, -27), (-2, -8), (-1, -1), (0, 0), (1, 1), (2, 8), (3, 27)\}$$

$$f'(x) = \{(-3, -27), (-2, -8), (-1, -1), (0, 0), (1, 1), (2, 8), (3, 27)\}$$

$$f'(x) = \{(-3, -27), (-2, -8), (-1, -1), (0, 0), (1, 1), (2, 8), (3, 27)\}$$

$$f'(x) = \{(-3, -27), (-2, -8), (-1, -1), (0, 0), (1, 1), (2, 8), (3, 27)\}$$

$$f'(x) = \{(-3, -27), (-2, -8), (-1, -1), (0, 0), (1, 1), (2, 8), (3, 27)\}$$

$$f'(x) = \{(-3, -27), (-2, -8), (-1, -1), (0, 0), (1, 1), (2, 8), (3, 27)\}$$

$$f'(x) = \{(-3, -27), (-2, -8), (-1, -1), (0, 0), (1, 1), (2, 8), (3, 27)\}$$

$$f'(x) = \{(-3, -27), (-2, -8), (-1, -1), (0, 0), (1, 1), (2, 8), (3, 27)\}$$

$$f'(x) = \{(-3, -27), (-2, -8), (-1, -1), (0, 0), (1, 1), (2, 8), (2, 7)\}$$

$$f'(x) = \{(-3, -27), (-2, -8), (-1, -1), (0, 0), (1, 1), (2, 8), (2, 7)\}$$

$$f'(x) = \{(-3, -27), (-2, -8), (-1, -1), (0, 0), (1, 1), (2, 8), (2, 7)\}$$

$$f'(x) = \{(-3, -27), (-2, -8), (-1, -1), (0, 0), (1, 1), (2, 8), (2, 7)\}$$

$$f'(x) = \{(-3, -27), (-2, -8), (-1, -1), (0, 0), (1, 1), (2, 8), (2, 7)\}$$

$$f'(x) = \{(-3, -27), (-2, -8), (-2, -2),$$

(b) Verify that the inverse of f(x) = 2x + 3 is $f^{-1}(x) = \frac{1}{2}(x - 3)$.

Q
$$g(x) = x^3$$

 $y = x^3$ Switch $x \notin y$
 $X = y^3$ Solve for y
 $3Nx = \sqrt[3]{y^3}$
 $y = \sqrt[3]{x} = y^{-1}(x) = \sqrt[3]{x}$
 $g(y^{-1}(x)) = \sqrt[3]{x^3}$
 $g'(y(x)) = \sqrt[3]{x^3}$
 $g''(y(x)) = \sqrt[3]{x^3}$

(b)
$$f(x) = 2x + 3$$

 $y = 2x + 3$
 $5 = 2y + 3$
 $5 = 6 = 6 = 7$
 $4 = \frac{x-3}{2}$
 $4 = \frac{x-3}{2}$
 $4 = \frac{x-3}{2}$

Find the inverse of f(x) = 2x + 3. Graph f and f^{-1} on the same coordinate axes.

$$y = 2x + 3$$

 $x = 2y + 3$
 $x - 3 = 2y$
 $\frac{2}{x} = y = f^{-1}(x)$
 $\frac{1}{2}(x - 3) = y$

The following function is one-to-one. Find its inverse and check the result.

$$f(x) = \frac{2x+1}{x-1}, x \neq 1$$

$$f(x) = \frac{2x+1}{x-1}, x \neq 1$$

$$f(f^{-1}(x)) \stackrel{?}{=} \chi \stackrel{?}{=} (\frac{(k+1)}{\gamma-2}) + 1 = \frac{2x+2+k+2}{2-2} \frac{3k}{2-2}$$

$$(y-1)(x) = (2y+1)$$

$$(y-1)(x) = (2y+1)$$

$$(y-2) = (x+1)$$

$$(y-2) = (x+1)$$

$$(y-2) = (x+1)$$

$$(x-2) = (x+1)$$

$$(x+1) =$$

By restricting the domain of a function that is not 1-1, we can make the function 1-1 and find its inverse.

Find the inverse of
$$y = f(x) = x^2$$
 if $x \ge 0$. Graph f and f^{-1} .

 $Y = X^2$
 $X \ge 0$
 $X = X^2$
 $X = X \ge 0$
 $X = X^2$
 $X = X \ge 0$
 $X = X^2$
 $Y = X \ge 0$
 $X = X \ge 0$