This packet will show you how to find the derivatives of composite functions. A composite function can be represented as f(g(x)) with f being the outside function and g being the inside.

Examples of composite functions:

$$y = (4x^2 + 1)^7$$
 the outside function is $f(x) = x^7$
the inside function is $g(x) = 4x^2 + 1$

$$y = f(g(x)) = (4x^{2} + 1)^{7}$$
the outside function is $f(x) = e^{x}$
the inside function is $g(x) = 3x$

$$y = f(g(x)) = e^{3x}$$

The Chain Rule

The Chain Rule

$$\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$$

The derivative of a composite function is the product of the derivatives of the outside and inside functions. The derivative of the outside function must be evaluated at the inside function.

Example 1. Differentiate $y = (4x^2 + 1)^7$

Solution: the outside function is x^7 and $\frac{d}{dx}x^7 = 7x^6$ Remember to evaluate at $4x^2 + 1$ the inside function is $4x^2 + 1$ and $\frac{d}{dx}(4x^2 + 1) = 8x$ $y' = 7(4x^2 + 1)^6 \cdot 8x$ $= 56x(4x^2 + 1)^6$

Example 2. Differentiate $y = e^{3x}$

Solution: the outside function is e^x and $\frac{d}{dx}e^x = e^x$ the inside function is 3x and $\frac{d}{dx}3x = 3$ $y' = e^{3x} \cdot 3$ Remember to evaluate at 3x $= 3e^{3x}$

Example 3. Differentiate $f(x) = \sqrt{3x^2 + 5x - 2}$

Solution: the outside function is \sqrt{x} and $\frac{d}{dx}\sqrt{x} = \frac{1}{2\sqrt{x}}$ the inside function is $3x^2 + 5x - 2$ and $\frac{d}{dx}(3x^2 + 5x - 2) = 6x + 5$ $f'(x) = \frac{1}{2\sqrt{3x^2 + 5x - 2}} \cdot (6x + 5) = \frac{6x + 5}{2\sqrt{3x^2 + 5x - 2}}$

Using the Product and Chain Rules to Differentiate

Example 4. Differentiate $k(x) = \frac{x}{(x^2+1)^2}$

Solution: write the original function as a product $k(x) = \frac{x}{(x^2+1)^2} = x \cdot (x^2+1)^{-2}$ now use the product rule to differentiate $k'(x) = \frac{d}{dx} \left(x \cdot (x^2+1)^{-2} \right) = 1 \cdot (x^2+1)^{-2} + x \cdot \frac{d}{dx} (x^2+1)^{-2}$ now use the chain rule to differentiate $\frac{d}{dx} (x^2+1)^{-2}$

$$= (x^{2} + 1)^{-2} + x \cdot (-2(x^{2} + 1)^{-3} \cdot 2x)$$

$$= \frac{1}{(x^{2} + 1)^{2}} + \frac{-4x^{2}}{(x^{2} + 1)^{3}}$$

Example 5. Differentiate $y = te^{-t^2}$

Solution:
$$y' = 1 \cdot e^{-t^2} + t \cdot \frac{d}{dt} e^{-t^2}$$

$$= e^{-t^2} + t \cdot \left(e^{-t^2} \cdot -2t \right)$$

$$= e^{-t^2} + -2t^2 e^{-t^2}$$

$$= \left(1 - 2t^2 \right) e^{-t^2}$$

Example 6. Differentiate $f(x) = (2x^3 - 5x^2)(e^{3x} + 1)$

Solution:
$$f'(x) = (6x^2 - 10x)(e^{3x} + 1) + (2x^3 - 5x^2)\frac{d}{dx}(e^{3x} + 1)$$

 $= (6x^2 - 10x)(e^{3x} + 1) + (2x^3 - 5x^2)((e^{3x}) \cdot 3)$
 $= (6x^2 - 10x)(e^{3x} + 1) + (6x^3 - 15x^2)e^{3x}$
 $= 6x^2e^{3x} + 6x^2 - 10xe^{3x} - 10x + 6x^3e^{3x} - 15x^2e^{3x}$
 $= e^{3x}(6x^3 + 6x^2 - 15x^2 - 10x) + 6x^2 - 10x$
 $= e^{3x}(6x^3 - 9x^2 - 10x) + 6x^2 - 10x$

1.
$$f(x) = (x+1)^{90}$$

2.
$$f(x) = \sqrt{1-x^2}$$

3.
$$y = (t^2 + 1)^{100}$$

4.
$$y = (\sqrt{x} + 1)^{100}$$

5.
$$y = e^{2t}$$

6.
$$w = \frac{1}{x^2 + x^4}$$

7.
$$f(t) = 2^{5t-3}$$

8.
$$y = e^{3w/2}$$

9.
$$w = e^{\sqrt{s}}$$

10.
$$y = \sqrt{x^3 + 1}$$

11.
$$f(x) = (3x^5 + 6x^2 - 7)^4$$

11. _____

12.
$$f(x) = \frac{1}{x^3 + 5x}$$

12. _____

<u>Section 2</u>. For Problems 13-16, find the derivative **using the product and chain rules**. (10 points each)

13.
$$f(x) = (5x^2 + 3)e^{x^2}$$

13. _____

14.
$$y = te^{5-2t}$$

14. _____

15.
$$f(z) = \frac{z}{(e^z + 1)^2}$$

15. _____

16.
$$f(x) = (x^2 + 3x)(1 - e^{-2x})$$

16. _____