Precalculus

Lesson 000: Stuff You Should Already Know: Algebra II Review Mrs. Snow, Instructor

Polynomials

A polynomial in one variable is an algebraic expression of the form

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 (1)

where $a_n, a_{n-1}, \ldots, a_1, a_0$ are constants,* called the **coefficients** of the polynomial, $n \ge 0$ is an integer, and x is a variable. If $a_n \ne 0$, it is the **leading coefficient**, and n is the **degree** of the polynomial.

$$-8x^3 + 4x^2 + 6x + 2$$

- a) What is the degree of the polynomial?
- b) What is the leading coefficient?

Special products

Difference of Two Squares

$$(x-a)(x+a) = x^2 - a^2$$
 (2)

Squares of Binomials, or Perfect Squares

$$(x+a)^2 = x^2 + 2ax + a^2$$
 (3a)

$$(x-a)^2 = x^2 - 2ax + a^2$$
 (3b)

Cubes of Binomials, or Perfect Cubes

$$(x+a)^3 = x^3 + 3ax^2 + 3a^2x + a^3$$
 (4a)

$$(x-a)^3 = x^3 - 3ax^2 + 3a^2x - a^3$$
 (4b)

Difference of Two Cubes

$$(x-a)(x^2+ax+a^2)=x^3-a^3$$
 (5)

Sum of Two Cubes

$$(x+a)(x^2-ax+a^2) = x^3+a^3$$
 (6)

Multipl	y the factors:
---------	----------------

1 7	
(x-3)(x+3)	$(x+2)^2$
(2x+1)(3x+4)	$(x-2)(x^2+2x+4)$

Factor:

$x^4 - 16$	$x^3 - 1$

$9x^2 - 6x + 1$	$x^2 + 4x - 12$
$3x^2 + 10x - 8$	$x^3 - 4x^2 + 2x - 8$

Simplifying Rational Expressions:

$\frac{x^2 + 4x + 4}{3}$	$\frac{x^3-8}{x^3-2x^2}$
$x^2 + 3x + 2$	x^3-2x^2

Multiplying and Dividing Rational Expressions

$$\frac{x^2 - 2x + 1}{x^3 + x} \cdot \frac{4x^2 + 4}{x^2 + x - 2}$$

$$\frac{\frac{x+3}{x^2-4}}{\frac{x^2-x-12}{x^3-8}}$$

Adding and Subtracting Rational Expressions

$$\frac{x^2}{x^2-4}-\frac{1}{x}$$

$$\frac{x}{x^2 + 3x + 2} + \frac{2x - 3}{x^2 - 1}$$

Quadratic Formula

Quadratic Formula

Consider the quadratic equation

$$ax^2 + bx + c = 0$$
 $a \neq 0$

If $b^2 - 4ac < 0$, this equation has no real solution. If $b^2 - 4ac \ge 0$, the real solution(s) of this equation is (are) given by the quadratic formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Find the solutions, if any, of the equation:

$$3x^2 - 5x + 1 = 0$$

Let a and b represent two real numbers with a < b.

A **closed interval**, denoted by [a, b], consists of all real numbers x for which $a \le x \le b$.

An **open interval**, denoted by (a, b), consists of all real numbers x for which a < x < b.

The **half-open**, or **half-closed**, **intervals** are (a, b], consisting of all real numbers x for which $a < x \le b$, and [a, b), consisting of all real numbers x for which $a \le x < b$.

Interval	Inequality	Graph
The open interval (a, b)	a < x < b	a b
The closed interval [a, b]	$a \le x \le b$	a b
The half-open interval (a, b)	$a \le x < b$	a b
The half-open interval (a, b)	$a < x \le b$	a b
The interval $[a, \infty)$	x≥ a	
The interval (a, ∞)	x > a	(→ →)
The interval $(-\infty, a]$	X≤ ∂	→
The interval $(-\infty, a)$	x < a	a
The interval $(-\infty, \infty)$	All real numbers	

Write each inequality using interval notation $1 \leq x \leq 3$	-4 < x < 0
<i>x</i> > 5	<i>x</i> ≤ 1