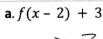
Algebra II

Lesson 3: Transformation Rules for Algebraic Equations Mrs. Snow, Instructor

When a number is added or changed in an algebraic equation, a transformation will occur. The graph will be moved up or down, left or right, or be stretched or shrunk. These changes are known as **transformations.** When a parent function f(x) is transformed, it becomes a different function. Let's use t(x) for the transformed function.

f(x+h)	move the x - value h units left	graph will slide horizontally left	
f(x-h)	move the x-value h units right	graph will slide horizontally right	
a(f(x))	multiply the <i>y-values by</i> a	$a>0$ $vertical\ stretch/\ steeper\ or\ narrower$ $0< a< 1 \ fraction$ $vertical\ shrink/flatter\ or\ wider$	
-f(x)	graph will flip upside down	Reflection across x-axis	
f(x) + k	move y- value k units up	Vertical translation up k units	
f(x)-k	move y- value k units down	graph will slide vertically down k units	
Put it all together	$t(x) = a \cdot f(x-h) + k$		


Enter parent function into calculator, and then enter equation below, what happened?

1.	$t(x)=2x^2$	$t(x) = \frac{1}{4}x^2$	$t(x) = x^2 + 3$	$t(x) = -x^2 + 3$
Stre	tch Foctor 2	Shrink forter /4	13	Reflect over X-axis
(a)	(4)	(1/4)(4)		13
2.	$t(x) = x^2 - 3$	$t(x) = (x-3)^2$	$(x) = (x^2 + 3)$	$(x) = -(x^2 + 3)$
ektosi į į į dataroja į mas	43	>3	_ _ 3	Reflect our x-axi
3.	t(x) = 2 x	t(x) = x+2	t(x) = x + 2	t(x) = - x + 2
	etch fautor	4-2	12	reflutorer waxi
4.	$t(x) = \frac{5}{x}$	$t(x) = \frac{1}{x+4}$	$t(x) = \frac{1}{x} + 3$	$t(x) = -\left(\frac{1}{x} + 3\right)$ Reflectorer x-axi
(5)(rtchfoctor5	4	13	£ 3

The order of operations for transformations is similar to those of equations; we deal with the **multiplication** <u>before</u> **addition/subtraction**. For graphs of functions involving more than one transformation, apply each change in the following order::

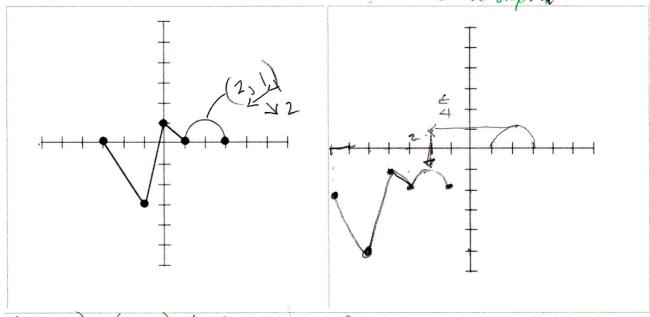
- 1. Horizontal Translation
- 2. Stretching or shrinking
- 3. Reflection
- 4. Vertical shift up/down

Examle 1... Describe each combined transformation, in the correct order.

b.
$$\frac{1}{2}g(x) + 3$$

Shrink : (ZXY)

$$c. -2g(x) - 7$$


reflectorer x-axis Stretch: 209

$$\frac{d.3h(x-4)+1}{}$$

 $\frac{d.3h(x-4)+1}{Shretch} \stackrel{4}{\longrightarrow} \stackrel{4}{\longrightarrow}$

When dealing with just a graph of a function, look at the x-y ordered pairs. For a horizontal shift, work with the x-value. For the stretch and vertical translation work with the y-value?

Example 2 Transform the function below to h(x+4)-2 5 how each step 11

