Algebra 2

Lesson 6-2 Polynomials and Linear Factors

Just as we factored quadratic equations in Chapter 5, we can factor polynomials with higher degrees. When a polynomial is factored, the terms are known as **Linear Factors.** In math we liken these linear factors to the prime factors of a real number because the polynomial cannoy be factored into any simpler term:

The polynomial
$$x^3 + 4x^2 + 5x + 2$$
 in factored form is: $(x + 1)(x + 1)(x + 2)$

When a polynomial is in factored form, the **zero product property** may be used to find the zeros. Remember the values of the x-intercepts are called **zeros** because the value of the function is zero at each x-intercept.

Multiplicity: If a linear factor of a polynomial is repeated, then the zero is repeated. A **repeated zero** is called a **multiple zero** and has a **multiplicity** equal to the number of times the zero occurs. The exponent of a binomial would indicate the multiplicity

Find the zeros of each function, state the multiplicity

funce
$$(x-3)^2(x-1) = 0$$
 $(x+1)(x-2)(x-3)$
 $k-3=0$ $k-3=0$ $x-1=0$ One time each

 $k=3$ $x=3$ $x=1$ $x=2$ $x=3$

tweed

 $x=3$ $x=1$ $x=2$ $x=3$

Multiplicity = 2 multiplicity

Write a polynomial function given the following zeros

$$x = -2,0,1$$

$$x = -5,-5,1$$

$$x$$

Factor each polynomial completely

 $9x^3 + 6x^2 - 3x$ 6FC = 3x

 $3x(3x^{2}+2x-1)=0$ $3x(3x^{2}+2x-1)=0$ 3x(3x-1)(x+1)=0 (-1,+1) (-1,+1)

K=U X=/3 X=-1

 $x^3 + 8x^2 + 16x$

X(K2+8x+16)

x (x+4)(x+4)

(note multiplicity of (x+4)

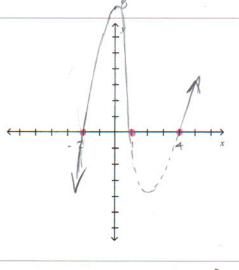
Find the zeros and sketch the graph

y = (x-1)(x+2)(x-4) = 0

X=1 X=-2 X-4=0

multiply out, x3 LC is + Cubic fenction

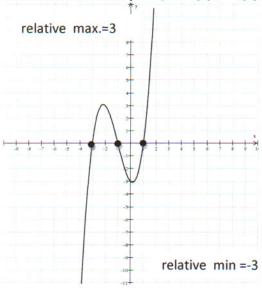
Constants (-1)(2)(-4)= +8



we know general shape of x3

With polynomials of degree greater than 2 we may have both minimum and maximum values of **y**. These are called **relative minimum** and **relative maximums** when comparing nearby points on a graph.

Example: Find the zeros and relative maximum and relative minimum of: y = (x + 1)(x - 1)(x + 3)



- 1. Using your graphing calculator, enter the equation **Y**= note: you don't need to write the expression in polynomial form, enter the binomials using parentheses to separate.
- 2. What are the relative minimum and maximum?
- 3. What are the zeros?

FACTOR THEOREM: The expression x - a is a linear factor of a polynomial if and only if the value **a** is a zero of the related polynomial factors. In other words: when x - a is a factor,

- 1. a is a solution to the polynomial
- 2. a is an x-intercept of the graph
- 3. **a** is a zero of the polynomial

CALCULATOR DIRECTIONS FOR FINDING A CUBIC MODEL

Example: Find the cubic model for the following points. (-2,7), (-1,0), (0,1) , (1,2), (2,9)

- First understand that a model is the equation that may be used to "model" the
- As with data in ch. 5, enter the data in STAT >Edit 1: edit enter (L1 is x and L2
- 2nd --Y= (stat plot), 1: turn on the first stat plot
- ZOOM 9: stat the data points will be plotted. Here for this data it resembles a possible cubic equation.
- STAT CALC 6:Cubic Reg now here before we hit enter twice and got the variables. Short cut:
- VARS > Y-VARS1: Function, 1: Y1 Vars is variables. Hit the VARS key. arrow over to y-variables and arrow down to select function then select Y1
- Here the view screen shows CubicReg Y1. This means we are going to perform the cubic regression and it will be recognized as Y1. ENTER
- For this example we get: a=-.166666666667

b=2.33333333333

c=1.1666666667

d=-1.33333333

• Now hit Y= and your equation is already entered into Y1. GRAPH and the line is graphed as seen in the view screen.