Algebra ll
Lesson 6.5/6.6 Finding Roots or Zeros of Cubic Functions
Partll
Mrs. Snow, Instructor

Now that we can predict the number and type of roots of a polynomial function we are going to
learn how find the roots of a polynomial function. The Rational Root Theorem is a technique
that identifies all possible rational roots of a polynomial.

How?
Factor both the constant term and the leading coefficient and then make ratios of all possible
combinations of the factors: factor of constantterm  _ P thase yvalues are the possible

factor of leading coefficient ~ q

rational roots.

Which of these rational roots are actual roots?
When we put the ratios into the polynomial, those that result in a zero (make a true statement)

ARE ROOTS.

Take a look at P(x) = (x — 2)(x — 3)(x + 4) multiplying the factors together we get:
P(x) =x3—x%—14x+ 24

So the zeros of P are 2,3, and — 4. These roots are some of possible rational roots derived
using the Rational Root theorem.

Rational Zeros Theorem

If the polynomial, P, has integer coefficients,
then every rational zero of P is of the form  +

<

p is a factor of the constant coefficient
q is a factor of the leading coefficient.
a. Soyou need to find all the possible

+p values and + q values to make all the i% ratios

One or more of the +§ ratios will be zeros of the polynomial.

Determine zeros: P (g) = 0. (is the value of p/q a solution to the polynomial?)

Once you find a zero, use synthetic division to reduce the polynomial into factors.
c. Keep following this process until you reach a quadratic factor then factor the
quadratic or use the Quadratic Formula to calculate last two factors.
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Identify the constant term and factor: +p
Identify the leading coefficient and factor :
Tq

List all ratio combinations :J:E
Plug ratios into the polynomial equation and

evaluate
So, the only rational root is__ ‘

Note: a cubic as 3 solutions the other 2 will be
imaginary or irrational.
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* Note: use “store function” key to evaluate expressions for F (j: -2-)
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Find all possible roots agg‘iﬁ'@mch cubic polynomial:

1. Using the Rational Root Theorem,
find the possible rational roots,

34+x2-x+2=0

2. If a graphing calculator is available, e B T = I\ \ Tz
' use the table of values to determinea = | —, =+ ab - .,.E_ t\ 12
rational root. T & g
:, 3. Use synthetic division and the rational
: root to reduce the polynomial, to a CH=> 2 7—\,»
linear and quadratic factor. ptﬁ\j =3 Q( ')r'j D N
4. Use the quadratic formula to find the
remaining roots. |
Always check the graph to make sure the =2) \ \ - (4
roots match the graph. 2 72 &
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