Algebra II

Lesson 6.5/6.6 Theorems about Polynomial Functions Part I

Mrs. Snow, Instructor

The sections of 6.5 and 6.6 are being combined into a single topic with two parts. Part I will cover theorems that will help us to determine all possible roots when only some of the roots are known.

Irrational Root Theorem:	Given a polynor	nial with rational	coefficients and v	\sqrt{b} is irrational. If
of $a + \sqrt{b}$ is a root, then y				ed <i>conjugates</i>
Oppos	ite sign	on 2nd	term.	

Imaginary Root Theorem: If the imaginary number of a+bi is a root of a polynomial with real coefficients, then the conjugate, a-bi is also a root. Again note these are **conjugates**. These roots are called complex conjugates

Same turns - 2nd turn opposite s(a)

To find these roots, you will reduce the polynomial down to linear factors and a quadratic factor by dividing the real factors into the original polynomial. When you get a quadratic factor, you will use the Quadratic Formula to solve.

A polynomial equation has the following roots, find two additional roots. Conjugates

$1 + \sqrt{3}$, and $-\sqrt{11}$	
V3,+MI	
3i, and 4 – i	
-3i,4+C	

Note - in the Quadratic Formula the Conjugates are "built in" with the to conjugates possible $\chi = -b$ $\pm |Nb^2 - 4ac| \leftarrow complex / irrational Value$

Find a 3rd degree polynomial equation with rational coefficients that has the given roots

1 and 3i => -3:

$$x = 1$$
 $x = 3$: $x = -3$:
 $x = 1$ $x = 3$: $x = -3$:
 $x = 1$ $x = 3$: $x = -3$:
 $x = 1$ $x = 3$: $x = -3$:
 $x = 1$ $x = 3$: $x = 2 + i$ $x = 2 - i$
 $x = 1$ $x = 3$: $x = 2 + i$ $x = 2 - i$
 $x = 1$ $x = 3$: $x = 2 + i$ $x = 2 - i$
 $x = 1$ $x = 3$: $x = 2 + i$ $x = 2 - i$
 $x = 1$ $x = 3$: $x = 2 + i$ $x = 2 - i$
 $x = 1$ $x = 3$: $x = 2 + i$ $x = 2 - i$
 $x = 1$ $x = 3$: $x = 2 + i$ $x = 2 - i$
 $x = 1$ $x = 3$: $x = 2 + i$ $x = 2 - i$
 $x = 1$ $x = 3$: $x = 2 + i$ $x = 2 - i$
 $x = 1$ $x = 3$: $x = 2 + i$ $x = 2 - i$
 $x = 1$ $x = 3$: $x = 2 + i$ $x = 2 - i$
 $x = 1$ $x = 3$: $x = 2 + i$ $x = 2 - i$
 $x = 1$ $x = 3$: $x = 2 + i$ $x = 2 - i$
 $x = 1$ $x = 3$: $x = 2 + i$ $x = 2 - i$
 $x = 1$ $x = 3$: $x = 2 + i$ $x = 2 - i$
 $x = 1$ $x = 3$: $x = 2 + i$ $x = 2 - i$
 $x = 3$: $x = 2 + i$ $x = 2 - i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2 + i$ $x = 2 + i$
 $x = 3$: $x = 2$: $x =$

Find a 4th degree polynomial equation with rational coefficients that has the given roots:

5-i and NZ => conjugates 5+i, -NZ

$$X = 5-i$$
 $X = 5+i$ $X = NZ$ $X = -NZ$
 $X - 5+i = 0$ $X - 5-i = 0$ $X - NZ = 0$ $X + NZ = 0$

$$(X - 5) + i)((X - 5) - i)(X - NZ)(Y + NZ) = 0$$

$$(X - 5)^2 - iX - 1)((X^2 - Z)) = 0$$

$$(X^2 - 10X + 125 + 1)((Y^2 - Z)) = 0$$

$$(X^2 - 10X + 125 + 1)((Y^2 - Z)) = 0$$

$$(X^4 - 10X^3 + 26X^2 - 2X^2 + 20X - 5Z = 0$$

V4-10x3+24x2+20x-52=0

Fundamental theorem of Algebra

In 1797 Carl Gauss proved what is known as the **Fundamental Theorem of Algebra.** It states that a polynomial of degree $n \ge 1$ has at least one complex zero. In essence, the fundamental theorem of algebra guarantees that every polynomial has a complete factorization, if we are allowed to use complex numbers (a+bi). Remember that a real number may be written as a complex number.

Fundamental Theorem of Algebra; *translation!*: An nth degree polynomial equation has exactly n roots; at least one of them will be complex.

You can often find all the zeros of a polynomial function by using a combination of graphing, Factor Theorem, polynomial division, the Remainder Theorem and the Quadratic Formula.

Find the number of complex roots, and the possible number of real roots $x^5 + x^3 + 2x^2 - 6 = 0$ degree 5 = 5 complex roots imaginary roots will be paired ti (a+)(a-)(c+)(c-)(d)at most of maginary -> I real $x^{10} + x^8 + x^4 + 3x^2 - x + 1 = 0$ Maginary roots pair up ± i (a+)(a-)(b+)(c+)(c-)(d+)(d-) (e+)(e-) 50 all maginay/10) - 10 real roots 8 1 2 real 6 11 4 real 4 11 6 real 6 real all (10) real 0 11