Algebra 2

Lesson 6-3: Dividing Polynomials

Mrs. Snow, Instructor

Dividing two numbers we use a process known as long division.

1512 ÷ 4 (378)	(4) =5/2	7/1649
4/15/2	OR	144
31		39
32		35 4 EREMAINS

We can also polynomials:

$$x^{2} + 3x - 18 by x - 3$$

$$x + 6$$

$$x - 3 = 2x + 3x - 18$$

$$-(x^{2} + 3x) + (?) = 6x$$

$$-(x^{2} + 3x) + (?) = 6x$$

$$0 + 6x - 18$$

$$-(6x + 18)$$

$$0$$

$$(x - 3)(x + 6) = x^{2} + 3x - 18$$

- 1. look at the first term in each polynomial. Here, ask, x goes into x^2 how many times?
- 2. As with long division, multiply quotient by the divisor.

and simplify; drop the next term from the dividend

3. Repeat the process of bringing down the next term followed by dividing, multiplying, and subtracting

$$x^{2}+2x-30 \div x-5$$

$$x+7$$

$$x-5 \mid x^{2}+2x-30$$

$$-(x^{2}+5x)$$

$$7x/-30$$

$$-(7x-35)$$

$$5 \quad \text{Remainde}$$

$$(x-5)(x+7)+5$$

When there is a remainder, the proper form for the factor is:

(dividend) = (divisor)(quotient) + remainder

How does this dividing help us?

- 1. Given a factor, we can simplify by dividing to find the factor pair.
- 2. We can verify if a polynomial is a factor of another polynomial. If the remainder is zero then our divisor is a factor!

Remainder Theorem

If we have a polynomial P(x) and it is divided by x - a, then:

$$P(a) = number = remainder$$

A second type of division we can use which is quicker than long division is known as **synthetic division**. This technique works only when we have a **linear binomial in the form of**

$$x-a$$
, that is $x-a$

$$x^{3}-7x^{2}+15x-9 \div x-3$$
 $x^{3}+4x^{2}+x-6 \div x+1$

Q coefficients
 $x-3$
 $x^{3}+4x^{2}+x-6 \div x+1$
 $x^{3}+4x^{2}+x-6 \div$

Is (x + 2) a factor of:

The volume in cubic feet of a workshop's storage chest can be expressed as the product of its three dimensions by the given function: $V(t) = x^3 + 7x^2 + 10x$. The depth of the chest is given by the function (x + 2). Find the linear expressions for the other two dimensions.

other dimensions

Find P(4) for $P(x) = x^4 - 5x^2 + 4x + 12$ use synthetic division:

Now solve for P(+4)

$$P(4) = 4^{4} - 5(4^{2}) + 4(4) + 12$$

$$= 256 - 80 + 16 + 12$$

$$= 204$$

Find P(-1) for $P(x) = 2x^4 + 6x^3 - 5x^2 + 60$

$$-1$$
 2 6 -5 0 60 -2 -4 9 -9 2 4 -9 9 51

P(-1)=5)

$$P(1)=2(-14)+6(-13)-5(-12)+60$$

= 2 -6-5+60