Algebra2

Lesson 2-2: Linear Equations

Mrs. Snow, Instructor

In Algebra I we discovered that a function is considered to be linear if the independent variable increases or decreases at a constant rate. Graphically, a function that graphs out to be a line is a linear function.

Vocabulary

- x This is the independent variable and is graphed on the horizontal axis.
- y This is the dependent variable and is the output of the function resulting when an x-value is put into the linear equation.
- **x-intercept** The location where a line crosses the x-axis.
- y-intercept The location where a line crosses the y-axis.

y-intercept has the form (0,y)

x-intercept has the form (x,0)

Example:

state the x and y intercepts for the graph at the right.

rate of change – the measure of the steepness of the line. It is ratio of the vertical change over the horizontal change between two points. The rate of change is also called the **slope**:

rate of change = slope =
$$m = \frac{\text{change in } f(x)}{\text{change in } x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\sqrt{y_2 - y_1}}{\sqrt{y_2 - y_2}}$$

Example: Does the xy table have a constant rate of change? Does the table model a linear function? Check all the

	t2 +2 +2 +2							+2 +1 +2 +1 Q					
х	0	2	4	6	8	7	X	0	2	3	5	6]
f(x)	-2	0	6	16	30		У	3	7	9	13	15	
4/2	300	2 +	(9)	€Uo c	onsti linea	ratedon	5.4	4/2	=2	+2	44 +42 = 2	3/1	
What is	the slop	e of a li	ne pas	sing thro	ugh the	points (0, –	$\frac{\times}{3}$ and	(7, -9)	= _	71	7/2=2	71	

$$M = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-9 - t - 3}{7 - 0} = \frac{(x_1 y_1)(x_2, y_2)}{7} = \frac{-6}{7} = \text{Slope}$$

fordaud Form => AX +By = C

Point-Slope Formula

A line passing through point (x_1, y_1) with a slope m has the equation: $y_1 = y_1 =$

y2-41 = M

Write in standard form the equation of each line:

slope 2, through
$$(4,-2)$$
 $y - y_1 - m(x-x_1)$

$$y - (-2) = 2(x - 4)$$
 pt slope fm
 $y + 2 = 2x - 8$
+8

$$3 + 10 = 2x - 8$$

 $3 + 10 = 2x - 9 = 10$

Write in point slope form the equation of the line that passes through the points (5,1) and (-4,-3)

$$m = -3 - 1 - 4 \times 19, \quad \times 292$$

$$-4 - 5 - 9 = m = 49$$

Graphing given a point and a slope

A slope makes graphing a line from a given point very easy.

Graph a line through (-1,-2) with a slope of $\frac{2}{3}$. $\frac{1}{3}$

Slope-Intercept Form

Combining the ideas about slope and intercept lead to a general equation form for a line called the slope-intercept form: y=mx+b, where m is the slope and b is the y-intercept. The slope-intercept form allows one to graph almost any linear equation in just a few seconds WITHOUT the use of a graphing calculator

y-intercept y = mx + b

Find the slope using slope-intercept form:

$$3x + 2y = 1 - 3x$$

$$= (-3x + 1) \frac{1}{2}$$

$$M = -\frac{A}{B} = \frac{-3}{2}$$
 $b = \frac{c}{B} = \frac{1}{2}$

$$Ax + By = C - Ax$$

$$Ax + C = Bx + C$$

$$Bx + C$$

We are able to find an equation of a line passing through a point and perpendicular to another line if we are given the reference line and the point. Also, we can find a line parallel to another if given the same information.

