Algebralll
Lesson 10-6: Translating Conic Sections
Mrs. Snow, Instructor
We have seen with our conics sections that they are not limited to being centered about the vertex, but may be
translated about the x —y planes; the center is at (h, k). The table below summarizes the equations for the conics
sections both centered at the origin and how a translation will alter the standard form:
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Let’s do a review of our translation problems:
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- We need to understand some terminology first.
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oy " /2. Identify the values of (h,k)
/ . 3. Which is the major axis?

4. Plug into the standard formula.




| Write the equation of a hyperbola with vertices (2,-1)

1. Sketch the points so you know the orientation of the |

d (2,7) and foci (2 10) and (2,-4). . hyperbola. Vertices show a verti:l{ orientation.
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2. Where is the midpoint of a line through the vertices?
. Use the midpoint formula to find y.

3. What is the foci? With a and ¢ what is b?

' Identify the conic section with the following equation:
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Try: 4x% +9y? + 16x — 54y = —61

W§ Y Sgumna
A Boslf s e
1 o ollupse
i\( Kox Ml Mj ‘643 Bl = -G

AT+ Y HO\( oy +4 e
|2 0e e

| Jo
i 0\(2 5)1 -—__3_(3

=2 C

—

"-"O A

g 1) :/ Saih e &M«/\
(24 1F2y3)

1. Group like terms together (x and y) and locate the
constant on the right side of the equation

2. Complete the square ¥ of the linear term coefficient
' squared, add to both sides of the equation |
' 3. If we divide through by the constant to get a 1 for
' the standard form of an ellipse we will see that the axes

, are equal, hence we have a circle with a radius of V48

. After we group like terms together and set about to
. complete the square, we need to understand how to
| handle a coefficient in front of the quadratic term.

1. Factor the leading coefficient out, if at all possible.

Square % the linear coefficient and then multiply that
| product with outside factor. Forx, % of 4 squaredis 4 |
. muit:ply by the outside 4. What is added to the left, i
. add to the right... |

2. follow through and simplify
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3. What is the conic?
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In Algebra | and in the 1¥ semester of algebra Il we calculated the intersection of two lines; i.e. solving a system of
equations. Well, system of equations may involve conic equations; they are not reserved for linear equations.

Solve the system of equations by graphing:
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